Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell Rep ; 43(4): 114121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615320

RESUMO

Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.


Assuntos
Neoplasias da Mama , Creatina Quinase Mitocondrial , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Creatina Quinase , Creatina Quinase Mitocondrial/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo
2.
Cancer Lett ; 586: 216653, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309615

RESUMO

Breast cancer is the leading cancer-related cause of death in women. Here we show that solute carrier family 38-member 3 (SLC38A3) is overexpressed in breast cancer, particularly in triple-negative breast cancer (TNBC) cells and tissues. Our study reveals that SLC38A3 regulates cellular glutamine, glutamate, asparagine, aspartate, alanine, and glutathione (GSH) levels in breast cancer cells. Our data demonstrate that SLC38A3 enhances cell viability, cell migration and invasion in vitro, and promotes tumor growth and metastasis in vivo, while reducing apoptosis and oxidative stress. Mechanistically, we show that SLC38A3 suppresses the activity of glycogen synthase kinase 3-ß (Gsk3ß), a negative regulator of ß-catenin, and increases protein levels of ß-catenin, leading to the upregulation of epithelial-to-mesenchymal-transition (EMT)-inducing transcription factors and EMT markers in breast cancer. In summary, we show that SLC38A3 is overexpressed in breast cancer and promotes breast cancer metastasis via the GSK3ß/ß-catenin/EMT pathway, presenting a novel therapeutic target to explore for breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , beta Catenina , Feminino , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Glutamina , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt
3.
Adv Healthc Mater ; : e2302499, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247228

RESUMO

Preclinical models are essential research tools before novel therapeutic or diagnostic methods can be applied to humans. These range from in vitro cell monocultures to vastly more complex animal models, but clinical translation to humans often fails to deliver significant results. Three-dimensional (3D) organoid systems are being increasingly studied to establish physiologically relevant in vitro platforms in a trade-off between the complexity of the research question and the complexity of practical experimental setups. The sensitivity and precision of analytical tools are yet another limiting factors in what can be investigated, and mass spectrometry (MS) is one of the most powerful analytical techniques available to the scientific community. Its innovative use to spatially resolve biological samples has opened many research avenues in the field of MS imaging (MSI). Here, this work aims to explore the current scientific landscape in the application of MSI on organoids, with an emphasis on their combined potential to facilitate and improve preclinical studies.

4.
Anal Chem ; 95(50): 18443-18450, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38060464

RESUMO

In the past decade, interest in organoids for biomedical research has surged, resulting in a higher demand for advanced imaging techniques. Traditional specimen embedding methods pose challenges, such as analyte delocalization and histological assessment. Here, we present an optimized sample preparation approach utilizing an Epredia M-1 cellulose-based embedding matrix, which preserves the structural integrity of fragile small intestinal organoids (SIOs). Additionally, background interference (delocalization of analytes, nonspecific (histological) staining, matrix ion clusters) was minimized, and we demonstrate the compatibility with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). With our approach, we can conduct label-free lipid imaging at the single-cell level, thereby yielding insights into the spatial distribution of lipids in both positive and negative ion modes. Moreover, M-1 embedding allows for an improved coregistration with histological and immunohistochemical (IHC) stainings, including MALDI-IHC, facilitating combined untargeted and targeted spatial information. Applying this approach, we successfully phenotyped crypt-like (CL) and villus-like (VL) SIOs, revealing that PE 36:2 [M - H]- (m/z 742.5) and PI 38:4 [M - H]- (m/z 885.5) display higher abundance in CL organoids, whereas PI 36:1 [M - H]- (m/z 863.6) was more prevalent in VL organoids. Our findings demonstrate the utility of M-1 embedding for advancing organoid research and unraveling intricate biological processes within these in vitro models.


Assuntos
Diagnóstico por Imagem , Lipidômica , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Manejo de Espécimes , Lasers
5.
Adv Sci (Weinh) ; 10(35): e2304343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37908150

RESUMO

Here, the authors report that co-crystallization of fluorophores with matrix-assisted laser desorption/ionization (MALDI) imaging matrices significantly enhances fluorophore brightness up to 79-fold, enabling the amplification of innate tissue autofluorescence. This discovery facilitates FluoMALDI, the imaging of the same biological sample by both fluorescence microscopy and MALDI imaging. The approach combines the high spatial resolution and specific labeling capabilities of fluorescence microscopy with the inherently multiplexed, versatile imaging capabilities of MALDI imaging. This new paradigm simplifies registration by avoiding physical changes between fluorescence and MALDI imaging, allowing to image the exact same cells in tissues with both modalities. Matrix-fluorophore co-crystallization also facilitates applications with insufficient fluorescence brightness. The authors demonstrate  feasibility of FluoMALDI imaging with endogenous and exogenous fluorophores and autofluorescence-based FluoMALDI of brain and kidney tissue sections. FluoMALDI will advance structural-functional microscopic imaging in cell biology, biomedicine, and pathology.


Assuntos
Encéfalo , Rim , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cristalização , Microscopia de Fluorescência , Rim/diagnóstico por imagem
6.
Breast Cancer Res ; 25(1): 148, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017485

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. METHODS: We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. RESULTS: Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3ß and MAPK signaling. CONCLUSIONS: Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfolipídeos/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
7.
Sci Rep ; 13(1): 18566, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903851

RESUMO

The premetastatic niche hypothesis proposes an active priming of the metastatic site by factors secreted from the primary tumor prior to the arrival of the first cancer cells. We investigated several extracellular matrix (ECM) structural proteins, ECM degrading enzymes, and ECM processing proteins involved in the ECM remodeling of the premetastatic niche. Our in vitro model consisted of lung fibroblasts, which were exposed to factors secreted by nonmalignant breast epithelial cells, nonmetastatic breast cancer cells, or metastatic breast cancer cells. We assessed ECM remodeling in vivo in premetastatic lungs of female mice growing orthotopic primary breast tumor xenografts, as compared to lungs of control mice without tumors. Premetastatic lungs contained significantly upregulated Collagen (Col) Col4A5, matrix metalloproteinases (MMPs) MMP9 and MMP14, and decreased levels of MMP13 and lysyl oxidase (LOX) as compared to control lungs. These in vivo findings were consistent with several of our in vitro cell culture findings, which showed elevated Col14A1, Col4A5, glypican-1 (GPC1) and decreased Col5A1 and Col15A1 for ECM structural proteins, increased MMP2, MMP3, and MMP14 for ECM degrading enzymes, and decreased LOX, LOXL2, and prolyl 4-hydroxylase alpha-1 (P4HA1) for ECM processing proteins in lung fibroblasts conditioned with metastatic breast cancer cell media as compared to control. Taken together, our data show that premetastatic priming of lungs by primary breast tumors resulted in significant ECM remodeling which could facilitate metastasis by increasing interstitial fibrillar collagens and ECM stiffness (Col14A1), disruptions of basement membranes (Col4A5), and formation of leaky blood vessels (MMP2, MMP3, MMP9, and MMP14) to promote metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Feminino , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Pulmão/patologia , Matriz Extracelular/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias da Mama/patologia
8.
Biosens Bioelectron ; 239: 115597, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597501

RESUMO

Multimodal tissue imaging techniques that integrate two complementary modalities are powerful discovery tools for unraveling biological processes and identifying biomarkers of disease. Combining Raman spectroscopic imaging (RSI) and matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry imaging (MSI) to obtain fused images with the advantages of both modalities has the potential of providing spatially resolved, sensitive, specific biomolecular information, but has so far involved two separate sample preparations, or even consecutive tissue sections for RSI and MALDI MSI, resulting in images with inherent disparities. We have developed RaMALDI, a streamlined, integrated, multimodal imaging workflow of RSI and MALDI MSI, performed on a single tissue section with one sample preparation protocol. We show that RaMALDI imaging of various tissues effectively integrates molecular information acquired from both RSI and MALDI MSI of the same sample, which will drive discoveries in cell biology, biomedicine, and pathology, and advance tissue diagnostics.


Assuntos
Técnicas Biossensoriais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Imagem Multimodal , Sorogrupo , Manejo de Espécimes
9.
NMR Biomed ; 36(4): e4770, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35538020

RESUMO

NMR spectroscopy and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) are both commonly used to detect large numbers of metabolites and lipids in metabolomic and lipidomic studies. We have demonstrated a new workflow, highlighting the benefits of both techniques to obtain metabolomic and lipidomic data, which has realized for the first time the combination of these two complementary and powerful technologies. NMR spectroscopy is frequently used to obtain quantitative metabolite information from cells and tissues. Lipid detection is also possible with NMR spectroscopy, with changes being visible across entire classes of molecules. Meanwhile, MALDI MSI provides relative measures of metabolite and lipid concentrations, mapping spatial information of many specific metabolite and lipid molecules across cells or tissues. We have used these two complementary techniques in combination to obtain metabolomic and lipidomic measurements from triple-negative human breast cancer cells and tumor xenograft models. We have emphasized critical experimental procedures that ensured the success of achieving NMR spectroscopy and MALDI MSI in a combined workflow from the same sample. Our data show that several phospholipid metabolite species were differentially distributed in viable and necrotic regions of breast tumor xenografts. This study emphasizes the power of combined NMR spectroscopy-MALDI imaging to advance metabolomic and lipidomic studies.


Assuntos
Lipidômica , Metabolômica , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfolipídeos
10.
Sci Transl Med ; 14(673): eabq6146, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449602

RESUMO

Inactivation of the tumor suppressor genes tumor protein p53 (TP53) and cyclin-dependent kinase inhibitor 2A (CDKN2A) occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, because of a paucity of GEJ-specific disease models, cancer-promoting consequences of TP53 and CDKN2A inactivation at the GEJ have not been characterized. Here, we report the development of a wild-type primary human GEJ organoid model and a CRISPR-edited transformed GEJ organoid model. CRISPR-Cas9-mediated TP53 and CDKN2A knockout (TP53/CDKN2AKO) in GEJ organoids induced morphologic dysplasia and proneoplastic features in vitro and tumor formation in vivo. Lipidomic profiling identified several platelet-activating factors (PTAFs) among the most up-regulated lipids in CRISPR-edited organoids. PTAF/PTAF receptor (PTAFR) abrogation by siRNA knockdown or a pharmacologic inhibitor (WEB2086) reduced proliferation and other proneoplastic features of TP53/CDKN2AKO GEJ organoids in vitro and tumor formation in vivo. In addition, murine xenografts of Eso26, an established human esophageal adenocarcinoma cell line, were suppressed by WEB2086. Mechanistically, TP53/CDKN2A dual inactivation disrupted both the transcriptome and the DNA methylome, likely mediated by key transcription factors, particularly forkhead box M1 (FOXM1). FOXM1 activated PTAFR transcription by binding to the PTAFR promoter, further amplifying the PTAF-PTAFR pathway. Together, these studies established a robust model system for investigating early GEJ neoplastic events, identified crucial metabolic and epigenomic changes occurring during GEJ model tumorigenesis, and revealed a potential cancer therapeutic strategy. This work provides insights into proneoplastic mechanisms associated with TP53/CDKN2A inactivation in early GEJ neoplasia, which may facilitate early diagnosis and prevention of GEJ neoplasms.


Assuntos
Organoides , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Junção Esofagogástrica , Carcinogênese , Transformação Celular Neoplásica , Inibidor p16 de Quinase Dependente de Ciclina/genética
12.
J Neuroinflammation ; 19(1): 130, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659311

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a neurodegenerative disease, wherein aberrant immune cells target myelin-ensheathed nerves. Conventional magnetic resonance imaging (MRI) can be performed to monitor damage to the central nervous system that results from previous inflammation; however, these imaging biomarkers are not necessarily indicative of active, progressive stages of the disease. The immune cells responsible for MS are first activated and sensitized to myelin in lymph nodes (LNs). Here, we present a new strategy for monitoring active disease activity in MS, chemical exchange saturation transfer (CEST) MRI of LNs. METHODS AND RESULTS: We studied the potential utility of conventional (T2-weighted) and CEST MRI to monitor changes in these LNs during disease progression in an experimental autoimmune encephalomyelitis (EAE) model. We found CEST signal changes corresponded temporally with disease activity. CEST signals at the 3.2 ppm frequency during the active stage of EAE correlated significantly with the cellular (flow cytometry) and metabolic (mass spectrometry imaging) composition of the LNs, as well as immune cell infiltration into brain and spinal cord tissue. Correlating primary metabolites as identified by matrix-assisted laser desorption/ionization (MALDI) imaging included alanine, lactate, leucine, malate, and phenylalanine. CONCLUSIONS: Taken together, we demonstrate the utility of CEST MRI signal changes in superficial cervical LNs as a complementary imaging biomarker for monitoring disease activity in MS. CEST MRI biomarkers corresponded to disease activity, correlated with immune activation (surface markers, antigen-stimulated proliferation), and correlated with LN metabolite levels.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças Neurodegenerativas , Animais , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Esclerose Múltipla/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Anal Chem ; 94(16): 6180-6190, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35413180

RESUMO

The molecular pathology of breast cancer is challenging due to the complex heterogeneity of cellular subtypes. The ability to directly identify and visualize cell subtype distribution at the single-cell level within a tissue section enables precise and rapid diagnosis and prognosis. Here, we applied mass spectrometry imaging (MSI) to acquire and visualize the molecular profiles at the single-cell and subcellular levels of 14 different breast cancer cell lines. We built a molecular library of genetically well-characterized cell lines. Multistep processing, including deep learning, resulted in a breast cancer subtype, the cancer's hormone status, and a genotypic recognition model based on metabolic phenotypes with cross-validation rates of up to 97%. Moreover, we applied our single-cell-based recognition models to complex tissue samples, identifying cell subtypes in tissue context within seconds during measurement. These data demonstrate "on the spot" digital pathology at the single-cell level using MSI, and they provide a framework for fast and accurate high spatial resolution diagnostics and prognostics.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Imagem , Feminino , Humanos , Espectrometria de Massas , Análise Espectral
14.
Theranostics ; 12(4): 1937-1951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198081

RESUMO

Rationale: Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is emerging as an alternative to gadolinium-based contrast MRI. We have evaluated the possibility of CEST MRI of orthotopic breast tumor xenografts with unlabeled aspirin's conversion to salicylic acid (SA) through various enzymatic activities, most notably inhibition of cyclooxygenase (COX)-1/-2 enzymes. Methods: We measured the COX-1/-2 expression in four breast cancer cell lines by Western Blot analysis and selected the highest and lowest expressing cell lines. We then performed CEST MRI following aspirin treatment to detect SA levels and ELISA to measure levels of downstream prostaglandin E2 (PGE2). We also injected aspirin into the tail vein of mice growing orthotopic tumor xenografts which expressed high and low COX-1/-2 and acquired SA CEST MR images of these tumor xenografts for up to 70 minutes. Tumors were then harvested to perform Western Blot and ELISA experiments to measure COX-1/-2 expression and PGE2 levels, respectively. Results: Western Blots determined that SUM159 cells contained significantly higher COX-1/-2 expression levels than MDA-MB-231 cells, in line with higher levels of downstream PGE2. SA CEST MRI yielded similar contrast at approximately 3% for both cell lines, independent of COX-1/-2 expression level. PGE2 levels decreased by about 50% following aspirin treatment. Results from our mouse study aligned with cultured cells, the overall SA CEST MRI contrast in both MDA-MB-231 and SUM159 tumor xenograft models was 5~8% at one hour post injection. PGE2 levels were ten times higher in SUM159 than MDA-MB-231 and decreased by 50%. The CEST contrast directly depended on the injected dose, with ~6%, ~3% and ~1.5% contrast observed following injection of 100 µL of 300 mM, 200 mM and 150 mM aspirin, respectively. Conclusions: Our data demonstrate the feasibility of using aspirin as a noninvasive activatable CEST MRI contrast agent for breast tumor detection.


Assuntos
Neoplasias da Mama , Animais , Aspirina , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Meios de Contraste , Dinoprostona , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanomedicina Teranóstica
15.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34752419

RESUMO

BACKGROUND: Although aberrant glycosylation is recognized as a hallmark of cancer, glycosylation in clinical breast cancer (BC) metastasis has not yet been studied. While preclinical studies show that the glycocalyx coating of cancer cells is involved in adhesion, migration, and metastasis, glycosylation changes from primary tumor (PT) to various metastatic sites remain unknown in patients. METHODS: We investigated N-glycosylation profiles in 17 metastatic BC patients from our rapid autopsy program. Primary breast tumor, lymph node metastases, multiple systemic metastases, and various normal tissue cores from each patient were arranged on unique single-patient tissue microarrays (TMAs). We performed mass spectrometry imaging (MSI) combined with extensive pathology annotation of these TMAs, and this process enabled spatially differentiated cell-based analysis of N-glycosylation patterns in metastatic BC. RESULTS: N-glycan abundance increased during metastatic progression independently of BC subtype and treatment regimen, with high-mannose glycans most frequently elevated in BC metastases, followed by fucosylated and complex glycans. Bone metastasis, however, displayed increased core-fucosylation and decreased high-mannose glycans. Consistently, N-glycosylated proteins and N-glycan biosynthesis genes were differentially expressed during metastatic BC progression, with reduced expression of mannose-trimming enzymes and with elevated EpCAM, N-glycan branching, and sialyation enzymes in BC metastases versus PT. CONCLUSION: We show in patients that N-glycosylation of breast cancer cells undergoing metastasis occurs in a metastatic site-specific manner, supporting the clinical importance of high-mannose, fucosylated, and complex N-glycans as future diagnostic markers and therapeutic targets in metastatic BC. FUNDING: NIH grants R01CA213428, R01CA213492, R01CA264901, T32CA193145, Dutch Province Limburg "LINK", European Union ERA-NET TRANSCAN2-643638.


Assuntos
Neoplasias da Mama/genética , Manose/metabolismo , Polissacarídeos/metabolismo , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Glicosilação , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica
16.
J Am Soc Mass Spectrom ; 32(12): 2728-2737, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699220

RESUMO

Matrix deposition is a critical step in obtaining reproducible and spatially representative matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging data. To date, few limited studies have examined the optimization of matrix spraying parameters for maximizing analyte extraction while minimizing analyte delocalization. Herein, we present a study using automated pneumatic spraying with a heated sample-holder tray to determine an optimized model for mouse whole kidney lipid imaging using a 2,5-dihydroxybenzoic acid matrix in which the solvent flow rate, nozzle velocity, and sample heating were optimized using a two-level factorial experimental design. Parameters examined to determine the optimum model include the number of analytes, the matrix crystal size, off tissue delocalization, the signal intensity, and spray time. Our results show that sample heating using a heated tray while spraying improves the MALDI imaging performance. This improvement is possible because higher solvent flow rates can be used in the pneumatic sprayer, allowing for better sample extraction, while sample delocalization is minimized due to sample heating.

17.
Adv Funct Mater ; 31(30)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34512229

RESUMO

Nanotechnology has provided tools for next generation biomedical devices which rely on nanostructure interfaces with living cells. In vitro biomimetic structures have enabled observation of cell response to various mechanical and chemical cues, and there is a growing interest in isolating and harnessing the specific cues that three-dimensional microenvironments can provide without the requirement for such culture and the experimental drawbacks associated with it. Here we report a randomly oriented gold coated Si nanowire substrate with patterned hydrophobic-hydrophilic areas for differentiation of isogenic breast cancer cells of varying metastatic potential. When considering synthetic surfaces for the study of cell-nanotopography interfaces, randomly oriented nanowires more closely resemble the isotropic architecture of natural extracellular matrix as compared to currently more widely used vertical nanowire arrays. In the study reported here, we show that primary cancer cells preferably attach to the hydrophilic region of randomly oriented nanowire substrate while secondary cancer cells do not adhere. Using machine learning analysis of fluorescence images, cells were found to spread and elongate on the nanowire substrates as compared to a flat substrate, where they mostly remain round, when neither surface was coated with extracellular matrix (ECM) proteins. Such platforms can not only be used for developing bioassays but also as stepping stones for tissue printing technologies where cells can be selectively patterned at desired locations.

18.
Cancer Res ; 81(5): 1189-1200, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262127

RESUMO

In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.


Assuntos
Imagem Multimodal/métodos , Neoplasias Experimentais/diagnóstico por imagem , Animais , Biomarcadores Tumorais/análise , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/patologia , Técnicas Fotoacústicas , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X/métodos
19.
Biosens Bioelectron ; 175: 112863, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272866

RESUMO

Identification of the metastatic potential represents one of the most important tasks for molecular imaging of cancer. While molecular imaging of metastases has witnessed substantial progress as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype has proven to be more elusive. In this study, we utilize both the morphological and molecular information provided by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-free route for optical phenotyping of cancer cells at single-cell resolution. By using an isogenic panel of cell lines derived from MDA-MB-231 breast cancer cells that vary in their metastatic potential, we show that 3D refractive index tomograms can capture subtle morphological differences among the parental, circulating tumor cells, and lung metastatic cells. By leveraging its molecular specificity, we demonstrate that coarse Raman microscopy is capable of rapidly mapping a sufficient number of cells for training a random forest classifier that can accurately predict the metastatic potential of cells at a single-cell level. We also perform multivariate curve resolution alternating least squares decomposition of the spectral dataset to demarcate spectra from cytoplasm and nucleus, and test the feasibility of identifying metastatic phenotypes using the spectra only from the cytoplasmic and nuclear regions. Overall, our study provides a rationale for employing coarse Raman mapping to substantially reduce measurement time thereby enabling the acquisition of reasonably large training datasets that hold the key for label-free single-cell analysis and, consequently, for differentiation of indolent from aggressive phenotypes.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Análise dos Mínimos Quadrados , Análise Espectral Raman
20.
J Am Soc Mass Spectrom ; 31(12): 2452-2461, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841002

RESUMO

Using citrate-capped gold nanoparticles (AuNPs) for laser desorption ionization mass spectrometry (LDI-MS) is an approach that has demonstrated broad applicability to ionization of different classes of molecules. Here, we show a simple AuNP-based approach for the ionization of neurotransmitters. Specifically, the detection of acetylcholine, dopamine, epinephrine, glutamine, 4-aminobutyric acid, norepinephrine, octopamine, and serotonin was achieved at physiologically relevant concentrations in serum and homogenized tissue. Additionally, pneumatic spraying of AuNPs onto tissue sections facilitated mass spectrometry imaging (MSI) of rabbit brain tissue sections, zebrafish embryos, and neuroblastoma cells for several neurotransmitters simultaneously using this quick and simple sample preparation. AuNP LDI-MS achieved mapping of neurotransmitters in fine structures of zebrafish embryos and neuroblastoma cells at a lateral spatial resolution of 5 µm. The use of AuNPs to ionize small aminergic neurotransmitters in situ provides a fast, high-spatial resolution method for simultaneous detection of a class of molecules that typically evade comprehensive detection with traditional matrixes.


Assuntos
Neurotransmissores/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Química Encefálica , Linhagem Celular Tumoral , Ouro/química , Humanos , Nanopartículas Metálicas/química , Coelhos , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA